NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3 - Matrices

NCERT solutions for class 12 maths chapter 3 exercise 3.2 consist of questions related to operations on matrices like the addition of matrices, multiplication of a matrix by a scalar, properties of matrix addition, and properties of scalar multiplication of a matrix. Topics such as properties of multiplication of matrices like associative, distributive, and existence of multiplicative identity are also covered in the NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2. There are 22 questions given in exercise 3.2 class 12 maths solutions. You can take help from these class 12 maths ch 3 ex 3.2 solutions. You are advised to solve more problems to get conceptual clarity. You can solve some problems related to matrix multiplication from miscellaneous exercises also. You can also check for NCERT solutions.

Also, see

Matrices Exercise 3.1

Matrices Exercise 3.3

Matrices Exercise 3.4

Matrices Miscellaneous Exercise

Matrices Exercise: 3.2

Question 1(i) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

A + B

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

(i) A + B

The addition of matrix can be done as follows

A+B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

A+B = \begin{bmatrix} 2+1 &4+3 \\ 3+(-2) & 2+5 \end{bmatrix}

A+B = \begin{bmatrix} 3 &7 \\ 1 & 7 \end{bmatrix}

Question 1(ii) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

A - B

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

(ii) A - B

A-B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

A-B = \begin{bmatrix} 2-1 &4-3 \\ 3-(-2) & 2-5 \end{bmatrix}

A-B = \begin{bmatrix} 1 &1 \\ 5 & -3 \end{bmatrix}

Question 1(iii) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

3A - C

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

(iii) 3A - C

First multiply each element of A with 3 and then subtract C

3A -C = 3\begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

3A -C = \begin{bmatrix} 6 &12 \\ 9 & 6 \end{bmatrix} - \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

3A -C = \begin{bmatrix} 6-(-2) &12-5 \\ 9-3 & 6-4 \end{bmatrix}

3A -C = \begin{bmatrix} 8 &7 \\ 6 & 2 \end{bmatrix}

Question 1(iv)Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

AB

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

(iv) AB

AB = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} \times \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

AB = \begin{bmatrix} 2\times 1+4\times -2 & \, \, \, 2\times 3+4\times 5 \\ 3\times 1+2\times -2 & \, \, \, 3\times 3+2 \times 5 \end{bmatrix}

AB = \begin{bmatrix} -6 &26 \\ -1 & 19 \end{bmatrix}

Question 1(v) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

BA

Answer:

The multiplication is performed as follows

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} ,B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

BA = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix} \times \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}

BA = \begin{bmatrix} 1\times 2+3\times 3 &1\times 4+3\times 2 \\ -2\times 2+5\times 3& -2\times 4+2\times 5 \end{bmatrix}

BA = \begin{bmatrix} 11 &10 \\ 11& 2 \end{bmatrix}

Question 2(i). Compute the following:

\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}

Answer:

(i) \begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}

= \begin{bmatrix} a+a &b+b \\ -b+b & a+a \end{bmatrix}

= \begin{bmatrix} 2a &2b \\ 0 & 2a \end{bmatrix}

Question 2(ii). Compute the following:

\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}

Answer:

(ii) The addition operation can be performed as follows

\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}

=\begin{bmatrix} a^2 + b^2+2ab& b^2+c^2+2bc\\ a^2 + c^2-2ac& a^2 + b^2-2ab \end{bmatrix}

=\begin{bmatrix} (a+b)^2 & (b+c)^2\\ (a-c)^2 & (a-b)^2 \end{bmatrix}

Question 2(iii). Compute the following:

\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}

Answer:

(iii) The addition of given three by three matrix is performed as follows

\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}

=\begin{bmatrix} -1+12 & 4+7 & -6+6\\ 8+8 & 5+0 & 16+5\\ 2+3 & 8+2 & 5+4 \end{bmatrix}

=\begin{bmatrix} 11 & 11 & 0\\ 16 & 5 & 21\\ 5 & 10 & 9 \end{bmatrix}

Question 2(iv). Compute the following:

\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}

Answer:

(iv) the addition is done as follows

\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}

=\begin{bmatrix} \cos^2+ \sin^2 x &\sin^2 x+\cos^2 x\\ \sin^2 x+\cos^2 x & \cos^2x+ \sin^2 x \end{bmatrix} since sin^2x+cos^2x=1

=\begin{bmatrix} 1 &1\\ 1 & 1 \end{bmatrix}

Question 3(i). Compute the indicated products.

\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

Answer:

(i) The multiplication is performed as follows

\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

=\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \times \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

=\begin{bmatrix} a\times a+b\times b &a\times -b+b\times a \\ -b\times a+a\times b &-b\times -b+a\times a \end{bmatrix}

=\begin{bmatrix} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{bmatrix}

Question 3(ii). Compute the indicated products.

\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}

Answer:

(ii) the multiplication can be performed as follows

\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}

=\begin{bmatrix} 1\times 2 &1\times 3&1\times 4\\ 2\times 2&2\times 3&2\times 4\\3\times 2&3\times 3&3\times 4 \end{bmatrix}

=\begin{bmatrix} 2 &3& 4\\ 4&6&8\\6&9&12 \end{bmatrix}

Question 3(iii). Compute the indicated products.

\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}

Answer:

(iii) The multiplication can be performed as follows

\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}

=\begin{bmatrix} 1\times 1+(-2)\times 2 & 1\times 2+(-2)\times 3&1\times 3+(-2)\times 1\\ 2\times 1+3\times 2 & 2\times 2+3\times 3&2\times 3+3\times 1 \end{bmatrix}

Question 3(iv). Compute the indicated products.

\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

Answer:

(iv) The multiplication is performed as follows

\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

=\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix}\times \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

=\begin{bmatrix} 2\times 1+3\times 0+4\times 3 \, \, & 2\times (-3)+3\times 2+4\times 0 \, \, & 2\times 5+3\times 4+4\times 5 \\ 3\times 1+4\times 0+5\times 3 \, \, & 3\times (-3)+4\times 2+5\times 0 & 3\times 5+4\times 4+5\times 5 \\ 4\times 1+5\times 0+6\times 3 \, \, & 4\times (-3)+5\times 2+6\times 0\, \, & 4\times 5+5\times 4+6\times 5 \end{bmatrix}

= \begin{bmatrix} 14 & 0 & 42\\ 18 & -1 & 56\\ 22 & -2 & 70 \end{bmatrix}

Question 3(v). Compute the indicated products.

\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

Answer:

(v) The product can be computed as follows

\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

=\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\times \begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

=\begin{bmatrix} 2\times 1+1\times (-1) &2\times 0+1\times (2) & 2\times 1+1\times (1) \\ 3\times 1+2\times (-1) & 3\times 0+2\times (2) &3\times 1+2\times (1) \\ (-1)\times 1+1\times (-1) & (-1)\times 0+1\times (2) & (-1)\times 1+1\times (1) \end{bmatrix}

=\begin{bmatrix} 1 &2&3 \\ 1 & 4&5\\ -2 & 2&0 \end{bmatrix}

Question 3(vi). Compute the indicated products.

\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

Answer:

(vi) The given product can be computed as follows

\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

=\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

=\begin{bmatrix} 3 \times 2+(-1)\times 1+3\times 3\, \, \, & 3 \times (-3)+(-1)\times 0+3\times 1 \\ (-1) \times 2+ 0 \times 1+2\times 3 \, \, \, & (-1) \times -3+0\times 0+2\times 1 \end{bmatrix}

=\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}

Question 4. If A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}, B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} and C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}, then compute (A+B) and (B-C). Also verify that A + (B - C) = (A + B) - C

Answer:

A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}, B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} and C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

A+B = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix} + \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}

A+B = \begin{bmatrix} 1+3 &2+(-1) &-3+2 \\ 5+4 &0+2 &2+5 \\ 1+2 & -1+0 &1+3 \end{bmatrix}

A+B = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}

B-C = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} -\begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

B-C = \begin{bmatrix} 3-4 &-1-1 &2-2 \\ 4-0 &2-3 &5-2 \\ 2-1 & 0-(-2) &3-3 \end{bmatrix}

B-C = \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}

Now, to prove A + (B - C) = (A + B) - C

L.H.S\, \, :\, A+(B-C)

A+(B-C)=\begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix} + \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix} (Puting value of B-C from above)

A+(B-C)=\begin{bmatrix} 1-1 &2-2 &-3+0 \\ 5+4 &0+(-1) &2+3 \\ 1+1 & -1+2 &1+0 \end{bmatrix}

A+(B-C)=\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

R.H.S\, \, :\, (A+B)-C

(A+B)-C = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix} - \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

(A+B)-C = \begin{bmatrix} 4-4 &1-1 &-1-2 \\ 9-0 &2-3 &7-2 \\ 3-1 & -1-(-2) &4-3 \end{bmatrix}

(A+B)-C = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

Hence, we can see L.H.S = R.H.S = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

Question 5. If A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} and B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}, then compute 3A - 5B

Answer:

A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} and B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}

3A-5B = 3\times \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} -5\times \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}

3A-5B = \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}

3A-5B = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}

3A-5B = 0

Question 6. Simplify \cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}.

Answer:

The simplification is explained in the following step

\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}

= \begin{bmatrix} \cos^{2}\theta & \sin\theta \cos\theta \\ -\sin\theta \cos\theta & \cos^{2}\theta \end{bmatrix} +\begin{bmatrix} \sin^{2}\theta & - \sin\theta \cos\theta\\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix}

= \begin{bmatrix} \cos^{2}\theta+\sin^{2}\theta & \sin\theta \cos\theta - \sin\theta \cos\theta \\ -\sin\theta \cos\theta + \sin\theta \cos\theta & \cos^{2}\theta + \sin^{2}\theta\end{bmatrix}

= \begin{bmatrix} 1&0 \\ 0 & 1\end{bmatrix} =I

the final answer is an identity matrix of order 2

Question 7(i). Find X and Y, if

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} and X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

Answer:

(i) The given matrices are

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} and X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}.............................1

X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}.............................2

Adding equation 1 and 2, we get

2 X = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} + \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

2 X = \begin{bmatrix} 7+3 &0+0 \\ 2+0 &5+3 \end{bmatrix}

2 X = \begin{bmatrix} 10 &0 \\ 2 &8 \end{bmatrix}

X = \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}

Putting the value of X in equation 1, we get

\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix} +Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}

Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} - \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}

Y = \begin{bmatrix} 7-5 &0-0 \\ 2-1 &5-4 \end{bmatrix}

Y = \begin{bmatrix} 2 &0 \\ 1 &1 \end{bmatrix}

Question 7(ii). Find X and Y, if

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} and 3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

Answer:

(ii) 2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} and 3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}..........................1

3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}......................2

Multiply equation 1 by 3 and equation 2 by 2 and subtract them,

3(2X + 3Y)-2(3X+2Y) = 3 \times \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \, \, \, 2\times \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

6X + 9Y-6X-4Y= \begin{bmatrix} 6 &9 \\ 12 & 0 \end{bmatrix} - \begin{bmatrix} 4 &-4 \\ -2 & 10 \end{bmatrix}

9Y-4Y= \begin{bmatrix} 6-4 &9-(-4) \\ 12-(-2) & 0-10 \end{bmatrix}

5Y= \begin{bmatrix} 2 &13 \\ 14 & -10 \end{bmatrix}

Y= \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}

Putting value of Y in equation 1 , we get

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X + 3 \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X + \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix}

2X = \begin{bmatrix} 2-\frac{6}{5} &3-\frac{39}{5} \\ 4-\frac{42}{5} & 0 -(-6)\end{bmatrix}

2X = \begin{bmatrix} \frac{4}{5} &-\frac{24}{5} \\ -\frac{22}{5} & 6\end{bmatrix}

X = \begin{bmatrix} \frac{2}{5} &-\frac{12}{5} \\ -\frac{11}{5} & 3\end{bmatrix}

Question 8. Find X, if Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} and 2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

Answer:

Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}

2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

Substituting the value of Y in the above equation

2X+ \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

2X = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}- \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}

2X = \begin{bmatrix} 1-3 &0-2 \\ -3-1 & 2-4 \end{bmatrix}

2X = \begin{bmatrix} -2 &-2 \\ -4 & -2 \end{bmatrix}

X = \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}

Question 9. Find x and y, if 2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

Answer:

2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2 & 6\\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2+y & 6+0\\ 0+1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2+y & 6\\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

Now equating LHS and RHS we can write the following equations

2+y=5 2x+2=8

y=5-2 2x=8-2

y=3 2x=6

x=3

Question 10. Solve the equation for x, y, z and t, if 2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}

Answer:

2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}

Multiplying with constant terms and rearranging we can rewrite the matrix as

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - 3\begin{bmatrix} 1& -1\\ 0 & 2 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 3& -3\\ 0 & 6 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9-3 &15-(-3)\\ 12-0 & 18-6 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 6 &18\\ 12 & 12 \end{bmatrix}

Dividing by 2 on both sides

\begin{bmatrix}x & z \\ y &t \end{bmatrix} = \begin{bmatrix} 3 &9\\ 6 & 6 \end{bmatrix}

x=3,y=6,z=9\, \, and\, \, t=6

Question 11. If x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}, find the values of x and y.

Answer:

x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

\begin{bmatrix}2x\\3x \end{bmatrix} + \begin{bmatrix} -y\\y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

Adding both the matrix in LHS and rewriting

\begin{bmatrix}2x-y\\3x+y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

2x-y=10........................1

3x+y=5........................2

Adding equation 1 and 2, we get

5x=15

x=3

Put the value of x in equation 2, we have

3x+y=5

3\times 3+y=5

9+y=5

y=5-9

y=-4

Question 12. Given 3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}, find the values of x, y, z and w.

Answer:

3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}

\begin{bmatrix}3x &3 y \\3 z & 3w \end{bmatrix} = \begin{bmatrix} x+4 & 6+x+y \\ -1+z+w & 2w+3 \end{bmatrix}

If two matrices are equal than corresponding elements are also equal.

Thus, we have

3x=x+4

3x-x=4

2x=4

x=2

3y=6+x+y

Put the value of x

3y-y=6+2

2y=8

y=4

3w=2w+3

3w-2w=3

w=3

3z=-1+z+w

3z-z=-1+3

2z=2

z=1

Hence, we have x=2,y=4,z=1\, \, and\, \, w=3.

Question 13. If F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}, show that F(x) F(y) = F(x + y).

Answer:

F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}

To prove : F(x) F(y) = F(x + y)

R.H.S : F(x + y)

F(x+y) = \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}

L.H.S : F(x) F(y)

F(x)F(y) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}\times \begin{bmatrix} \cos y & -\sin y& 0\\\sin y &\cos y & 0 \\ 0 &0&1\end{bmatrix}

F(x)F(y) = \begin{bmatrix} \cos x \cos y- \sin x\sin y+0 & -\cos x \sin y-\sin x\cos y+0& 0+0+0\\\ sin x\cos y+\cos x \sin y+0 & - \sin x\sin y+\cos x \cos y+0 &0+0+0 \\ 0+0+0 &0+0+0&0+0+1\end{bmatrix}


F(x) F(y)= \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}

Hence, we have L.H.S. = R.H.S i.e. F(x) F(y) = F(x + y).

Question 14(i). Show that

\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

Answer:

To prove:

\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

L.H.S : \begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}

= \begin{bmatrix}5\times 2+(-1)\times 3 &5\times 1+(-1)\times 4\\6\times 2+7\times 3&6\times 1+7\times 4 \end{bmatrix}

= \begin{bmatrix}7 &1\\33&34 \end{bmatrix}

R.H.S : \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

= \begin{bmatrix} 2\times 5+1\times 6 & 2\times (-1)+1\times 7\\ 3\times 5+4\times 6 & 3\times (-1)+4\times 7 \end{bmatrix}

= \begin{bmatrix} 16 & 5\\ 39 & 25 \end{bmatrix}

Hence, the right-hand side not equal to the left-hand side, that is

Question 14(ii). Show that

\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

Answer:

To prove the following multiplication of three by three matrices are not equal

\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

L.H.S: \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix}

= \begin{bmatrix}1\times(-1)+2\times 0+3\times 2 \, \, \, & 1\times(1)+2\times (-1)+3\times 3\, \, \, &1\times(0)+2\times 1+3\times 4\\0\times(-1)+1\times 0+0\times 2\, \, \, &0\times(1)+1\times (-1)+0\times 3\, \, \, &0\times(0)+1\times 1+0\times 4\\1\times(-1)+1\times 0+0\times 2\, \, \, &1\times(1)+1\times (-1)+0\times 3\, \, \, &1\times(0)+1\times 1+0\times 4 \end{bmatrix}

= \begin{bmatrix}5& 8&14\\0&-1&1\\-1&0&1\end{bmatrix}


R.H.S : \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

= \begin{bmatrix}-1\times(1)+1\times 0+0\times 1 \, \, \, & -1\times(2)+1\times (1)+0\times 1\, \, \, &-1\times(3)+1\times 0+0\times 0\\0\times(1)+-(1)\times 0+1\times 1\, \, \, &0\times(2)+(-1)\times (1)+1\times 1\, \, \, &0\times(3)+(-1)\times 0+1\times 0\\2\times(1)+3\times 0+4\times 1\, \, \, &2\times(2)+3\times (1)+4\times 1\, \, \, &2\times(3)+3\times 0+4\times 0 \end{bmatrix}

= \begin{bmatrix}-1& -1&-3\\1&0&0\\6&11&6\end{bmatrix}

Hence, L.H.S \neq R.H.S i.e. \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}.

Question 15. FindA^2 -5A + 6I, if

A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

Answer:

A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

First, we will find ou the value of the square of matrix A

A\times A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}\times \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

A^{2} = \begin{bmatrix} 2\times 2+0\times 2+1\times 1 & 2\times 0+0\times 1+1\times -1 & 2\times 1+0\times 3+1\times 0\\ 2\times 2+1\times 2+3\times 1& 2\times 0+1\times 1+3\times -1 &2\times 1+1\times 3+3\times 0 \\ 1\times 2+(-1)\times 2+0\times 1 & 1\times 0+(-1)\times 1+0\times -1 & 1\times 1+(-1)\times 3+0\times 0 \end{bmatrix}

A^{2} = \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}

I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

\therefore A^2 -5A + 6I

= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix} -5 \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}+6 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}- \begin{bmatrix} 10 & 0 & 5\\ 10 & 5 &15 \\ 5 & -5 & 0 \end{bmatrix}+\begin{bmatrix} 6 & 0 & 0\\ 0 & 6 &0 \\ 0 & 0 & 6 \end{bmatrix}

= \begin{bmatrix} 5-10+6 & -1-0+0 & 2-5+0\\ 9-10+0 & -2-5+6 &5-15+0 \\ 0-5+0 & -1-(-5)+0 & -2-0+6 \end{bmatrix}

= \begin{bmatrix} 1 & -1 & -3\\ -1 & -1 &-10 \\ -5 & 4 & 4 \end{bmatrix}

Question 16. If A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix} prove that A^3 - 6A^2 + 7A + 2I = 0.

Answer:

A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

First, find the square of matrix A and then multiply it with A to get the cube of matrix A

A\times A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

A^{2} = \begin{bmatrix}1+0+4&0+0+0&2+0+6\\0+0+2&0+4+0&0+2+3\\2+0+6&0+0+0&4+0+9 \end{bmatrix}

A^{2} = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}

A^{3}=A^{2}\times A

A^{2}\times A = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix} \times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

A^{3} = \begin{bmatrix}5+0+16&0+0+0&10+0+24\\2+0+10&0+8+0&4+4+15\\8+0+26&0+0+0&16+0+39 \end{bmatrix}

A^{3} = \begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}

I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

\therefore A^3 - 6A^2 + 7A + 2I = 0

L.H.S :

\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}- 6\begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}+7 \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}+2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

=\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix} - \begin{bmatrix}30&0&48\\12&24&30\\48&0&78 \end{bmatrix} + \begin{bmatrix}7&0&14\\0&14&7\\14&0&21 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 &0 \\ 0 & 0 & 2 \end{bmatrix}

=\begin{bmatrix}21-30+7+2&0-0+0+0&34-48+14+0\\12-12+0+0&8-24+14+2&23-30+7+0\\34-48+14+0&0-0+0+0&55-78+21+2 \end{bmatrix}

=\begin{bmatrix}30-30&0&48-48\\12-12&24-24&30-30\\48-48&0&78-78 \end{bmatrix}

= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 &0 \\ 0 & 0 & 0 \end{bmatrix}=0

Hence, L.H.S = R.H.S

i.e.A^3 - 6A^2 + 7A + 2I = 0.

Question 17. If A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} and I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}, find k so that A^{2} = kA - 2I.

Answer:

A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

A \times A= \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}\times \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

A^{2} = \begin{bmatrix}9-8 &-6+4\\12-8&-8+4 \end{bmatrix}

A^{2} = \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}

A^{2} = kA - 2I

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -2 \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -\begin{bmatrix}2 &0\\0&2 \end{bmatrix}

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}+ \begin{bmatrix}2 &0\\0&2 \end{bmatrix} =k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

\begin{bmatrix}1+2 &-2+0\\4+0&-4+2 \end{bmatrix}=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}

\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} =\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}

We have,3=3k

k=\frac{3}{3}=1

Hence, the value of k is 1.

Question 18. If A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix} and I is the identity matrix of order 2, show thatI + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

Answer:

A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}

I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

To prove : I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

L.H.S : I+A

I+A = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}+ \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}

I+A = \begin{bmatrix} 1+0&0-\tan\frac{\alpha}{2}\\0+\tan\frac{\alpha}{2}&1+ 0\end{bmatrix}

I+A = \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}

R.H.S : (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}= (\begin{bmatrix}1 &0\\0&1 \end{bmatrix}- \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix})\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix} =\begin{bmatrix} 1-0&0-(-\tan\frac{\alpha}{2})\\0-\tan\frac{\alpha}{2}&1- 0\end{bmatrix} \times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}=\begin{bmatrix} 1&\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2}&1\end{bmatrix} \times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

=\begin{bmatrix} \cos\alpha + \sin \alpha\tan\frac{\alpha}{2} &- \sin \alpha+ \cos \alpha \tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} \cos\alpha + \sin \alpha &\tan\frac{\alpha}{2} \sin\alpha + \cos \alpha \end{bmatrix}

=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}\tan\frac{\alpha}{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ (2\cos^{2} \frac{\alpha }{2} -1)\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} (2\cos^{2} \frac{\alpha }{2} -1) + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} &\tan\frac{\alpha}{2} 2\sin\frac{\alpha } {2} \ cos \frac{\alpha }{2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}

=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin^{2}\frac{\alpha }{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} -\tan\frac{\alpha}{2}\\-2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+\tan\frac{\alpha}{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} & 2\sin^{2}\frac{\alpha } {2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}

= \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}

Hence, we can see L.H.S = R.H.S

i.e. I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}.

Question 19(i). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 1800

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

\begin{bmatrix}x &(30000-x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} =1800 (simple interest for 1 year =\frac{pricipal\times rate}{100} )

\frac{5}{100}x+\frac{7}{100}(30000-x) = 1800

5x+210000-7x=180000

210000-180000=7x-5x

30000=2x

x=15000

Thus, to obtain an annual total interest of Rs. 1800, the trust fund should invest Rs 15000 in the first bond and Rs 15000 in the second bond.

Question 19(ii). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 2000

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

\begin{bmatrix}x &(30000-x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} =2000 (simple interest for 1 year =\frac{pricipal\times rate}{100} )

\frac{5}{100}x+\frac{7}{100}(30000-x) = 2000

5x+210000-7x=200000

210000-200000=7x-5x

10000=2x

x=5000

Thus, to obtain an annual total interest of Rs. 2000, the trust fund should invest Rs 5000 in the first bond and Rs 25000 in the second bond.

Question 20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Answer:

The bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books.

Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively.

The total amount the bookshop will receive from selling all the books:

12\begin{bmatrix}10 &8&10 \end{bmatrix} \begin{bmatrix}80\\60\\40 \end{bmatrix}

=12(10\times 80+8\times 60+10\times 40)

= 12(800+480+ 400)

= 12(1680)

=20160

The total amount the bookshop will receive from selling all the books is 20160.

Question 21 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively. Choose the correct answer in Exercises 21 and 22.

Q21. The restriction on n, k and p so that PY + WY will be defined are:
(A) k = 3, p = n

(B) k is arbitrary,p = 2

(C) p is arbitrary, k = 3

(D) k = 2, p = 3

Answer:

P and Y are of order p*k and 3*k respectivly.

\therefore PY will be defined only if k=3, i.e. order of PY is p*k.

W and Y are of order n*3 and 3*k respectivly.

\therefore WY is defined because the number of columns of W is equal to the number of rows of Y which is 3, i.e. the order of WY is n*k

Matrices PY and WY can only be added if they both have same order i.e = n*k implies p=n.

Thus, k = 3, p = nare restrictions on n, k and p so that PY + WY will be defined.

Option (A) is correct.

Question 22 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k,
respectively. Choose the correct answer in Exercises 21 and 22. If n = p, then the order of the matrix 7X - 5Z is:
(A) p × 2
(B) 2 × n
(C) n × 3
(D) p × n

Answer:

X has of order 2*n .

\therefore 7X also has of order 2*n .

Z has of order 2*p .

\therefore 5Z also has of order 2*p .

Mtarices 7X and 5Z can only be subtracted if they both have same order i.e 2*n= 2*p and it is given that p=n.

We can say that both matrices have order of 2*n.

Thus, order of 7X - 5Z is 2*n.

Option (B) is correct.

More about NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2:-

There are 20 long answer type questions and 2 multiple-type questions are given in the NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2. You should try to solve all of them on your own. Also, there are 14 solved examples given before the NCERT textbook exercise 3.2 Class 12 Maths. Solving these examples will help you to grasp the concepts and solve textbook questions very easily. These Class 12th maths chapter 3 exercise 3.2 examples are very descriptive with help some important definitions. There are some theorems given in the textbook. Sometimes prove of these theorems is asked in the CBSE board exams. You should look into them also.

Also Read| Matrices Class 12 Maths Chapter Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2:-

  • NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2 are very helpful in solving NCERT problems.
  • Class 12 maths chapter 3 exercise 3.2 solutions are designed the basis of guidelines given by the CBSE on which you can rely upon.
  • Only Knowing the answer is enough to get good marks but you should know how to write answers in the board exams in order to get good marks.
  • Exercise 3.2 Chapter 3 Maths Solutions are prepared by experts who know how best to write in the board exams.
  • You can use these class 12 maths chapter 3 exercise 3.2 solutions. for reference.

Also see-

  • NCERT solutions for class 12 maths chapter 3

  • NCERT exemplar solutions class 12 maths chapter 3

NCERT solutions of class 12 subject wise

  • NCERT solutions for class 12 Maths

  • NCERT solutions for class 12 Physics

  • NCERT solutions for class 12 Chemistry

  • NCERT solutions for class 12 Biology

Subject wise NCERT Exampler solutions

Streamed Webinar How To Choose A Stream In Class 11 08 Apr'22 05:00 PM to 08 Apr'22 06:00 PM IST Dr. Srividya (Organisational Psychologist, Career And Personal Growth Coach) +0More Want To Gain Work Experience? Here’s A List Of Work-From-Home Internship Opportunities 4 min read Feb 28, 2022 Read More

  • NCERT Exemplar Solutions for Class 12th Maths

  • NCERT Exemplar Solutions for Class 12th Physics

  • NCERT Exemplar Solutions for Class 12th Chemistry

  • NCERT Exemplar Solutions for Class 12th Biology

Happy learning!!!