NCERT Solutions for Exercise 7.6 Class 12 Maths Chapter 7 - Integrals

In NCERT solutions for Class 12 Maths chapter 7 exercise 7.6 functions like logarithmic, inverse trigonometric functions, exponential functions etc. are discussed in step by step manner. Solutions to exercise 7.6 Class 12 Maths are prepared in a holistic manner by subject matter experts. Hence NCERT solutions for Class 12 Maths chapter 7 exercise 7.6 provided below can be a good source. There is no need to refer to any other book for these topics as the content provided in the NCERT book is more than sufficient for the examination. Practicing from this exercise can help students score well in exams like JEE Main. The NCERT chapter Integrals also has the following exercise for practice.

  • Integrals Exercise 7.1

  • Integrals Exercise 7.2

  • Integrals Exercise 7.3

  • Integrals Exercise 7.4

  • Integrals Exercise 7.5

  • Integrals Exercise 7.7

  • Integrals Exercise 7.8

  • Integrals Exercise 7.9

  • Integrals Exercise 7.10

  • Integrals Exercise 7.11

  • Integrals Miscellaneous Exercise

Integrals Class 12 Chapter 7 Exercise: 7.6

Question:1 Integrate the functions x \sin x

Answer:

Given function is
f(x)=x \sin x
We will use integrate by parts method
\int x\sin x = x.\int \sin xdx - \int(\frac{d(x)}{dx}.\int sin x dx)dx\\ \\ \int x\sin x = x.(-\cos x)- \int (1.(-\cos x))dx\\ \\ \int x\sin x= -x\cos x+\sin x + C
Therefore, the answer is -x\cos x+\sin x + C

Question:2 Integrate the functions x \sin 3x

Answer:

Given function is
f(x)=x \sin 3x
We will use integration by parts method
\int x\sin 3x = x.\int \sin 3xdx - \int(\frac{d(x)}{dx}.\int sin 3x dx)dx\\ \\ \int x\sin 3x = x.(\frac{-\cos 3x}{3})- \int (1.(\frac{-\cos 3x}{3}))dx\\ \\ \int x\sin 3x= -\frac{x\cos 3x}{3}+\frac{\sin 3x}{9} + C

Therefore, the answer is -\frac{x\cos 3x}{3}+\frac{\sin 3x}{9} + C

Question:3 Integrate the functions x ^ 2 e ^x

Answer:

Given function is
f(x)=x^2e^x
We will use integration by parts method
\int x^2e^x= x^2.\int e^xdx - \int(\frac{d(x^2)}{dx}.\int e^x dx)dx\\ \\ \int x^2e^x = x^2.e^x- \int (2x.e^x)dx\\
Again use integration by parts in \int (2x.e^x)dx\\
\int (2x.e^x)dx = 2x.\int e^x dx - \int (\frac{d(2x)}{dx}.\int e^xdx)dx\\ \int 2x.e^x dx = 2xe^x- \int 2.e^xdx\\ \int 2x.e^x dx = 2xe^x- 2e^x
Put this value in our equation
we will get,
\int x^2.e^x dx =x^2e^x -2xe^x+ 2e^x + C\\ \int x^2.e^x dx = e^x(x^2-2x+2)+ C

Therefore, answer is e^x(x^2-2x+2)+ C

Question:4 Integrate the functions x \log x

Answer:

Given function is
f(x)=x.\log x
We will use integration by parts method
\int x.\log xdx= \log x.\int xdx - \int(\frac{d(\log x)}{dx}.\int x dx)dx\\ \\ \int x\log xdx = \log x.\frac{x^2}{2}- \int (\frac{1}{x}.\frac{x^2}{2})dx\\ \int x\log xdx = \log x.\frac{x^2}{2}- \int \frac{x}{2}dx\\ \int x\log xdx = \log x.\frac{x^2}{2}- \frac{x^2}{4}+ C

Therefore, the answer is \frac{x^2}{2}\log x- \frac{x^2}{4}+ C

Question:5 Integrate the functions x \log 2x

Answer:

Given function is
f(x)=x.\log 2 x
We will use integration by parts method
\int x.\log 2xdx= \log 2x.\int xdx - \int(\frac{d(\log 2x)}{dx}.\int x dx)dx\\ \\ \int x\log 2xdx = \log 2x.\frac{x^2}{2}- \int (\frac{2}{2x}.\frac{x^2}{2})dx\\ \int x\log 2xdx = \log 2x.\frac{x^2}{2}- \int \frac{x}{2}dx\\ \int x\log 2xdx = \log 2x.\frac{x^2}{2}- \frac{x^2}{4}+ C

Therefore, the answer is \log 2x.\frac{x^2}{2}- \frac{x^2}{4}+ C

Question:6 Integrate the functions x^ 2 \log x

Answer:

Given function is
f(x)=x^2.\log x
We will use integration by parts method
\int x^2.\log xdx= \log x.\int x^2dx - \int(\frac{d(\log x)}{dx}.\int x^2 dx)dx\\ \\ \int x^2\log xdx = \log x.\frac{x^3}{3}- \int (\frac{1}{x}.\frac{x^3}{3})dx\\ \int x^2\log xdx = \log x.\frac{x^3}{3}- \int \frac{x^2}{3}dx\\ \int x^2\log xdx = \log x.\frac{x^3}{3}- \frac{x^3}{9}+ C

Therefore, the answer is \log x.\frac{x^3}{3}- \frac{x^3}{9}+ C

Question:7 Integrate the functions x \sin ^{ -1} x

Answer:

Given function is
f(x)=x.\sin^{-1} x
We will use integration by parts method
\int x.\sin^{-1} xdx= \sin^{-1} x.\int xdx - \int(\frac{d(\sin^{-1} x)}{dx}.\int x dx)dx\\ \\ \int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\
Now, we need to integrate \int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\
\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \frac{1-x^2}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}} \right )dx\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \sqrt{1-x^2}-\frac{1}{\sqrt{1-x^2}} \right )dx\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\left ( \int \sqrt{1-x^2}dx-\int \frac{1}{\sqrt{1-x^2}}dx \right )\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{1}{2}\left ( \frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}\sin^{-1}x-\sin^{-1}x \right )\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{x\sqrt{1-x^2}}{4} -\frac{\sin^{-1}x}{4}+C
Put this value in our equation

Therefore, the answer is \int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x\sqrt{1-x^2}}{4}

Question:8 Integrate the functions x \tan ^{-1} x

Answer:

Given function is
f(x)=x.\tan^{-1} x
We will use integration by parts method
\int x.\tan^{-1} xdx= \tan^{-1} x.\int xdx - \int(\frac{d(\tan^{-1} x)}{dx}.\int x dx)dx\\ \\ \int x\tan^{-1} xdx = \tan^{-1} x.\frac{x^2}{2}- \int (\frac{1}{1+x^2}.\frac{x^2}{2})dx\\ \\ \int x\tan^{-1} xdx = \tan^{-1} x.\frac{x^2}{2}-\frac{1}{2}\int \left ( \frac{x^2+1}{1+x^2}-\frac{1}{1+x^2} \right )dx\\ \\ \int x\tan^{-1} xdx = \tan^{-1} x.\frac{x^2}{2}-\frac{1}{2}\int \left ( 1-\frac{1}{1+x^2} \right )dx\\ \\ \int x\tan^{-1} xdx = \tan^{-1} x.\frac{x^2}{2}-\frac{1}{2}\left ( x- \tan^{-1}x \right )+C\\ \\ \int x\tan^{-1}xdx = \frac{\tan^{-1}x}{2}(2x^2+1)-\frac{x}{2}+C

Put this value in our equation
\int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \frac{x}{4\sqrt{1-x^2}}-\frac{\sin^{-1}x}{4}+C\\ \int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x}{4\sqrt{1-x^2}}

Therefore, the answer is \frac{\tan^{-1}x}{2}(2x^2+1)-\frac{x}{2}+C

Question:9 Integrate the functions x\cos ^{ -1} x

Answer:

Given function is
f(x)=x.\cos^{-1} x
We will use integration by parts method
\int x.\cos^{-1} xdx= \cos^{-1} x.\int xdx - \int(\frac{d(\cos^{-1} x)}{dx}.\int x dx)dx\\ \\ \int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}- \int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\
Now, we need to integrate \int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\
\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \frac{1-x^2}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}} \right )dx\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \sqrt{1-x^2}-\frac{1}{\sqrt{1-x^2}} \right )dx\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\left ( \int \sqrt{1-x^2}dx-\int \frac{1}{\sqrt{1-x^2}}dx \right )\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{1}{2}\left ( \frac{x}{2}\sqrt{1-x^2}-\frac{1}{2}\cos^{-1}x+\cos^{-1}x \right )\\ \\ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C
Put this value in our equation
\int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}-\left ( \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C \right )\\ \\ \int x\cos^{-1} xdx =\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}

Therefore, the answer is \frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}

Question:10 Integrate the functions ( \sin ^{-1}x ) ^ 2

Answer:

Given function is
f(x)=( \sin ^{-1}x ) ^ 2
we will use integration by parts method
\int (\sin^{-1}x)^2= (\sin^{-1}x)^2.\int 1dx-\int \left ( \frac{d( (\sin^{-1}x)^2)}{dx} .\int 1dx\right )dx\\ \\ \int (\sin^{-1}x)^2 = (\sin^{-1}x)^2.x-\int \left ( \sin^{-1}.\frac{2x}{\sqrt{1-x^2}} \right )dx\\ \int (\sin^{-1}x)^2 = (\sin^{-1}x)^2.x + \left [ \sin^{-1}x.\int \frac{-2x}{\sqrt{1-x^2}}dx-\int \left ( \frac{d(\sin^{-1}x)}{dx}. \int \frac{-2x}{\sqrt{1-x^2}}dx\right ) \right ]\\ \\ . \ \ \ \ \ = (\sin^{-1}x)^2.x + \left [ \sin^{-1}x.2\sqrt{1-x^2}- \int \frac{1}{\sqrt{1-x^2}}.2\sqrt{1-x^2}dx \right ]\\ \\ . \ \ \ \ \ = (\sin^{-1}x)^2.x + 2\sin^{-1}x\sqrt{1-x^2}-2x+C
Therefore, answer is (\sin^{-1}x)^2.x + 2\sin^{-1}x\sqrt{1-x^2}-2x+C

Question:11 Integrate the functions \frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}

Answer:

Consider \int \frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}dx =I

So, we have then: I = \frac{-1}{2}\int \frac{-2x}{\sqrt{1-x^2}}. \cos^{-1}x dx

After taking \cos ^{-1}x as a first function and \left ( \frac{-2x}{\sqrt{1-x^2}} \right ) as second function and integrating by parts, we get

I =-\frac{1}{2}\left [ \cos^{-1}x\int\frac{-2x}{\sqrt{1-x^2}}dx - \int\left \{ \left ( \frac{d}{dx}\cos^{-1}x \right )\int \frac{-2x}{\sqrt{1-x^2}}dx \right \}dx \right ] =-\frac{1}{2}\left [ \cos^{-1}x.2{\sqrt{1-x^2}} + \int \frac{-1}{\sqrt{1-x^2}}.2\sqrt{1-x^2}dx \right ]

=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-\int2dx \right ]

=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-2x \right ]+C

Or, -\left \sqrt{1-x^2}\cos^{-1}x +x\right +C

Question:12 Integrate the functions x \sec ^2 x

Answer:

Consider x \sec ^2 x

So, we have then: I =\int x\sec^2 x dx

After taking x as a first function and \sec^2x as second function and integrating by parts, we get

I =x\int \sec^2 x dx -\int \left \{ \left ( \frac{d}{dx}x \right )\int \sec^2 x dx \right \}dx

= x\tan x -\int1.\tan x dx

= x\tan x +\log|\cos x | +C

Question:13 Integrate the functions \tan ^{-1} x

Answer:

Consider \tan ^{-1} x

So, we have then: I =\int 1.\tan^{-1}x dx

After taking \tan^{-1}x as a first function and 1 as second function and integrating by parts, we get

I = \tan^{-1}x \int 1dx -\int \left \{ \left ( \frac{d}{dx}\tan^{-1}x \right )\int1.dx \right \}dx

= \tan^{-1}x.x -\int \frac{1}{1+x^2}.xdx

= x\tan^{-1}x -\frac{1}{2}\int \frac{2x}{1+x^2}dx

= x\tan^{-1}x -\frac{1}{2}\log|1+x^2|+C

= x\tan^{-1}x -\frac{1}{2}\log(1+x^2)+C

Question:14 Integrate the functions x ( \log x )^ 2

Answer:

Consider x ( \log x )^ 2

So, we have then: I = \int x(\log x)^2 dx

After taking (\log x )^2 as a first function and x as second function and integrating by parts, we get

I = (\log x )^2 \int xdx -\int \left \{ \left ( \frac{d}{dx} (\log x)^2 \right )\int x.dx \right \}dx

= (\log x)^2 .\frac{x^2}{2} - \int \frac{2\log x }{x}.\frac{x^2}{2} dx

= (\log x)^2 .\frac{x^2}{2} - \int x\log x dx

= (\log x)^2 .\frac{x^2}{2} - \left ( \frac{x^2 \log x }{2} -\frac{x^2}{4} \right )+C

Question:15 Integrate the functions ( x^2 + 1 ) \log x

Answer:

Consider ( x^2 + 1 ) \log x

So, we have then: I = \int (x^2+1) \log x dx = \int x^2 \log x dx +\int \log x dx

Let us take I = I_{1} +I_{2} ....................(1)

Where, I_{1} = \int x^2\log x dx and I_{2} = \int \log x dx

So, I_{1} = \int x^2\log x dx

After taking \log x as a first function and x^2 as second function and integrating by parts, we get

I = \log x \int x^2dx -\int \left \{ \left ( \frac{d}{dx} \log x \right )\int x^2.dx \right \}dx

= \log x .\frac{x^3}{3} - \int \frac{1}{x}.\frac{x^3}{3} dx

= \log x .\frac{x^3}{3} - \frac{x^3}{9} +C_{1} ....................(2)

I_{2} = \int \log x dx

After taking \log x as a first function and 1 as second function and integrating by parts, we get

I_{2} = \log x \int 1.dx - \int \left \{ \left ( \frac{d}{dx}\log x \right ) \int 1.dx \right \}dx

= \log x .x -\int \frac{1}{x}. xdx

= x\log x -\int 1 dx

= x\log x -x +C_{2} ................(3)

Now, using the two equations (2) and (3) in (1) we get,

I = \frac{x^3}{3}\log x -\frac{x^3}{9} +C_{1} +x\log x - x +C_{2}

= \frac{x^3}{3}\log x -\frac{x^3}{9} +x\log x - x +(C_{1}+C_{2})

=\left ( \frac{x^3}{3}+x \right ) \log x -\frac{x^3}{9} -x+C

Question:16 Integrate the functions e ^ x ( \sin x + \cos x )

Answer:

Let suppose
I = e ^ x ( \sin x + \cos x )
f(x) = \sin x \Rightarrow f'(x) = \cos x
we know that,
I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C
Thus, the solution of the given integral is given by

\therefore I = e^x\sin x +C

Question:17 Integrate the functions \frac{x e ^x }{( 1+ x )^2}

Answer:

\frac{x e ^x }{( 1+ x )^2}
Let suppose
I = \int \frac{e^x(x)}{(1+x)^2}dx
by rearranging the equation, we get
\Rightarrow \int e^x[\frac{1}{1+x}-\frac{1}{(1+x)^2}]dx
let
f(x)=\frac{1}{1+x} \Rightarrow f'(x)= -\frac{1}{(1+x)^2}
It is known that \int e^x[f(x)+f'(x)]=e^x[f(x)]+C
therefore the solution of the given integral is

I = \frac{e^x}{1+x}+C

Question:18 Integrate the functions e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )

Answer:

Let
I =e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )
substitute 1 =\sin ^2\frac{x}{2}+\cos^2\frac{x}{2} and \sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}

\\\Rightarrow e^x(\frac{\sin^2\frac{x}{2}+\cos^2\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}})\\ =e^x(\frac{1}{2}\sec^2\frac{x}{2}+\tan\frac{x}{2})\\
let
f(x) =\tan\frac{x}{2} \Rightarrow f'(x)=\frac{1}{2}\sec^2\frac{x}{2}
It is known that \int e^x[f(x)+f'(x)]=e^x[f(x)]+C
Therefore the solution of the given integral is

I = e^x\tan\frac{x}{2} +C

Question:19 Integrate the functions e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )

Answer:

e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )
It is known that
\int e^x[f(x)+f'(x)]=e^x[f(x)]+C

let
f(x)=\frac{1}{x}\Rightarrow f'(x)=-\frac{1}{x^2}
Therefore the required solution of the given above integral is
I = e^x.\frac{1}{x}+C

Question:20 Integrate the functions \frac{( x-3)e ^x }{( x-1)^3}

Answer:

\frac{( x-3)e ^x }{( x-1)^3}
It is known that \int e^x[f(x)+f'(x)]=e^x[f(x)]+C

So, By adjusting the given equation, we get
\int\frac{( x-3)e ^x }{( x-1)^3} =\int e^x(\frac{x-1-2}{(x-1)^3}) =\int e^x({\frac{1}{(x-1)^2}-\frac{2}{(x-1)^3})}dx

to let
f(x)=\frac{1}{(x-1)^2}\Rightarrow f'(x)=-\frac{2}{(x-1)^3}
Therefore the required solution of the given I=\frac{e^x}{(x-1)^2}+C integral is

Question:21 Integrate the functions e ^{ 2x } \sin x

Answer:

Let
I =e ^{ 2x } \sin x
By using integrating by parts, we get

\\=\sin x\int e ^{ 2x }dx-\int(\frac{d}{dx}\sin x.\int e^{2x}dx)\ dx\\ =\frac{\sin x.e^{2x}}{2}-\frac{1}{2}\int e^{2x}.\cos x\ dx\\ =\frac{\sin x.e^{2x}}{2}-\frac{1}{2}[\cos x\int e^{2x}dx-\int (\frac{d}{dx}\cos x.\int e^{2x}dx)\ dx]\\ =\frac{\sin x.e^{2x}}{2}-\frac{1}{2}[\cos x.\frac{e^x}{2}+\frac{1}{2}\int e^{2x}\sin x dx]\\ =\frac{\sin x.e^{2x}}{2}-\frac{1}{4}\cos x.e^{2x}-\frac{1}{4}I\\ \Rightarrow \frac{5}{4}I =\frac{\sin x.e^{2x}}{2}-\frac{1}{4}\cos x.e^{2x}\\ I = \frac{e^{2x}}{5}[2\sin x-\cos x]+C

Question:22 Integrate the functions \sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )

Answer:

\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )

\int \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx
let
x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta

\\=\int\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta\\ =\int\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta\\ =\int2\theta \sec^2\theta d\theta\\
Taking \theta as a first function and \sec^2\theta as a second function, by using by parts method

\\=2[\theta\int \sec^2\theta d\theta-\int(\frac{d}{d\theta}\theta.\int \sec^2\theta\ d\theta)d\theta]\\ =2[\theta\tan\theta-\int \tan\theta\ d\theta]+C\\ =2[\theta\tan\theta+\log\left | \cos\theta \right |]+C\\ =2x\tan^{-1}x+2\log (1+x^2)^{-1/2}\\ =2x\tan^{-1}x-\log(1+x^2)+C

Question:23 Choose the correct answer

\int x ^ 2 e ^{x ^3 } dx \: \: equals

A ) \frac{1}{3} e ^{x^3} + C \\\\ B) \frac{1}{3} e ^{x^2} + C \\\\ C ) \frac{1}{2} e ^{x^3} + C \\\\ D ) \frac{1}{2} e ^{x^2} + C

Answer:

the integration can be done ass follows

let x^3 =t\Rightarrow 3x^2dx=dt
\Rightarrow I =\frac{1}{3}\int e^tdt =\frac{1}{3}e^t+C=\frac{1}{3}e^x^3+C

Question:24 Choose the correct answer

\int e ^ x \sec ( 1+ \tan x ) dx \: \: \: equals

A ) e ^ x \cos x + C \\\\ B) e ^ x \sec x + C \\\\ C ) e ^ x \sin x + C\\\\D ) e ^ x \tan x + C

Answer:

we know that,
I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C
from above integral
let
f(x)=\sec x\Rightarrow f'(x)= \sec x.\tan x
thus, the solution of the above integral is
I=e^x\sec x+C

More About NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.6

The NCERT Class 12 Maths chapter Integrals is enough to have a command on this chapter. Exercise 7.6 Class 12 Maths provided here are step by step solutions and covers theoretical concepts also in the questions. NCERT solutions for Class 12 Maths chapter 7 exercise 7.6 is a one stop solution to score well in the exam.

Also Read| Integrals Class 12 Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.6

  • The Class 12th Maths chapter 7 exercise along with a reference book is sufficient for the good command.

  • Exercise 7.6 Class 12 Maths is on the similar line to that of exercise 7.5. So it will be easy to crack if one has already done exercise 7.5.

  • Class 12 Maths chapter 7 exercise 7.6 solutions provides good tricks to use in the exam for fastly solving the questions.

Also see-

  • NCERT Exemplar Solutions Class 12 Maths Chapter 7

  • NCERT Solutions for Class 12 Maths Chapter 7

NCERT Solutions Subject Wise

  • NCERT Solutions Class 12 Chemistry

  • NCERT Solutions for Class 12 Physics

  • NCERT Solutions for Class 12 Biology

  • NCERT Solutions for Class 12 Mathematics

Subject Wise NCERT Exemplar Solutions

  • NCERT Exemplar Class 12 Maths

  • NCERT Exemplar Class 12 Physics

  • NCERT Exemplar Class 12 Chemistry

  • NCERT Exemplar Class 12 Biology

Happy learning!!!