# NCERT Solutions for Exercise 7.7 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Class 12 Maths chapter 7 exercise 7.7 is the seventh exercise in the sequence of chapter 7 Integrals. This NCERT syllabus exercise is interesting from a learning point of view as it caters to special types of functions for integration which are quadratic functions under square root.

A special approach is followed to solve such questions which can be learnt from solving a few questions given in this Class 12 Maths NCERT textbook exercise. Students should mug up the basic approach to solve the questions of this type in order to save time in the examination. Exercise 7.7 Class 12 Maths hence cannot be avoided by the serious students. Students should religiously practice NCERT solutions for Class 12 Maths chapter 7 exercise 7.7 provided below. Also they can refer to the NCERT chapter exercises of Integrals provided below.

• Integrals Exercise 7.1

• Integrals Exercise 7.2

• Integrals Exercise 7.3

• Integrals Exercise 7.4

• Integrals Exercise 7.5

• Integrals Exercise 7.6

• Integrals Exercise 7.8

• Integrals Exercise 7.9

• Integrals Exercise 7.10

• Integrals Exercise 7.11

• Integrals Miscellaneous Exercise

## Integrals Class 12 Chapter 7 Exercise 7.7

### Question:1 Integrate the functions in Exercises 1 to 9.

$\sqrt{4 - x^2}$

Given function $\sqrt{4 - x^2}$ ,

So, let us consider the function to be;

$I = \int \sqrt{4-x^2}dx$

$= \int \sqrt{(2)^2-x^2}dx$

Then it is known that, $= \int \sqrt{a^2-x^2}dx =\frac{x}{2}\sqrt{a^2-x^2} +\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C$

Therefore, $I = \frac{x}{2}\sqrt{4-x^2} +\frac{4}{2}\sin^{-1}{\frac{x}{2}}+C$

$= \frac{x}{2}\sqrt{4-x^2} +2\sin^{-1}{\frac{x}{2}}+C$

### Question:2 Integrate the functions in Exercises 1 to 9.

$\sqrt{1 - 4x^2}$

Given function to integrate $\sqrt{1 - 4x^2}$

Now we can rewrite as

$= \int \sqrt{1 - (2x)^2}dx$

As we know the integration of this form is $\left [ \because \int \sqrt{a^2-x^2}dx =\frac{x}{2}\sqrt{a^2-x^2} +\frac{a^2}{2}\sin^{-1}\frac{x}{a} \right ]$

$= \frac{(\frac{2x}{2})\sqrt{1^2-(2x)^2}+\frac{1^2}{2}\sin^{-1}\frac{2x}{1}}{2\rightarrow Coefficient\ of\ x\ in\ 2x} +C$

$= \frac{1}{2}\left [ x\sqrt{1-4x^2}+\frac{1}{2}\sin^{-1}2x \right ]+C$

$= \frac{x}{2}\sqrt{1-4x^2}+\frac{1}{4}\sin^{-1}2x+C$

### Question:3 Integrate the functions in Exercises 1 to 9.

$\sqrt{x^2 + 4x + 6}$

Given function $\sqrt{x^2 + 4x + 6}$ ,

So, let us consider the function to be;

$I = \int\sqrt{x^2 + 4x + 6}dx$

$= \int\sqrt{(x^2 + 4x + 4)+2}dx = \int\sqrt{(x + 2)^2 +(\sqrt2)^2}dx$

And we know that, $\int \sqrt{x^2+a^2}dx = \frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log|x+\sqrt{x^2+a^2}| +C$

$\Rightarrow I = \frac{x+2}{2}\sqrt{x^2+4x+6}+\frac{2}{2}\log\left | (x+2)+\sqrt{x^2+4x+6} \right |+C$

$= \frac{x+2}{2}\sqrt{x^2+4x+6}+\log\left | (x+2)+\sqrt{x^2+4x+6} \right |+C$

### Question:4 Integrate the functions in Exercises 1 to 9.

$\sqrt{x^2 + 4x +1}$

Given function $\sqrt{x^2 + 4x +1}$ ,

So, let us consider the function to be;

$I = \int\sqrt{x^2 + 4x + 1}dx$

$= \int\sqrt{(x^2 + 4x + 4)-3}dx = \int\sqrt{(x + 2)^2 -(\sqrt3)^2}dx$

And we know that, $\int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log|x+\sqrt{x^2-a^2}| +C$

$\therefore I = \frac{x+2}{2}\sqrt{x^2+4x+1}-\frac{3}{2}\log\left | (x+2)+\sqrt{x^2+4x+1} \right |+C$

### Question:5 Integrate the functions in Exercises 1 to 9.

$\sqrt{1-4x-x^2}$

Given function $\sqrt{1-4x-x^2}$ ,

So, let us consider the function to be;

$I = \int\sqrt{1-4x-x^2}dx$

$= \int\sqrt{1-(x^2+4x+4-4)}dx = \int\sqrt{1+4 -(x+2)^2}dx$

$= \int\sqrt{(\sqrt5)^2 -(x+2)^2}dx$

And we know that, $\int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C$

$\therefore I = \frac{x+2}{2}\sqrt{1-4x-x^2}+\frac{5}{2}\sin^{-1}\left ( \frac{x+2}{\sqrt5} \right )+C$

### Question:6 Integrate the functions in Exercises 1 to 9.

$\sqrt{x^2 + 4x - 5}$

Given function $\sqrt{x^2 + 4x - 5}$ ,

So, let us consider the function to be;

$I = \int\sqrt{x^2+4x-5}dx$

a $= \int\sqrt{(x^2+4x+4)-9}dx = \int\sqrt{(x+2)^2 -(3)^2}dx$

And we know that, $\int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log|x+\sqrt{x^2-a^2}|+C$

$\therefore I = \frac{x+2}{2}\sqrt{x^2+4x-5}-\frac{9}{2}\log\left | (x+2)+ \sqrt{x^2+4x-5} \right |+C$

### Question:7 Integrate the functions in Exercises 1 to 9.

$\sqrt{1 + 3x - x^2}$

Given function $\sqrt{1 + 3x - x^2}$ ,

So, let us consider the function to be;

$I = \int\sqrt{1+3x-x^2}dx$

$= \int\sqrt{(1-\left ( x^2-3x+\frac{9}{4}-\frac{9}{4} \right )}dx = \int \sqrt{\left ( 1+\frac{9}{4} \right )-\left ( x-\frac{3}{2} \right )^2}dx$ $= \int \sqrt{\left ( \frac{\sqrt{13}}{2} \right )^2-\left ( x-\frac{3}{2} \right )^2}dx$

And we know that, $\int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C$

$\therefore I = \frac{x-\frac{3}{2}}{2}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\left ( \frac{x-\frac{3}{2}}{\frac{\sqrt{13}}{2}} \right )+C$

$= \frac{2x-3}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\left ( \frac{2x-3}{\sqrt{13}} \right )+C$

### Question:8 Integrate the functions in Exercises 1 to 9.

$\sqrt{x^2 + 3x}$

Given function $\sqrt{x^2 + 3x}$ ,

So, let us consider the function to be;

$I = \int\sqrt{x^2+3x}dx$

$= \int\sqrt{x^2+3x+\frac{9}{4}-\frac{9}{4}}dx$

$= \int\sqrt{\left ( x+\frac{3}{2} \right )^2-\left ( \frac{3}{2} \right )^2 }dx$

And we know that, $\int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log|x+\sqrt{x^2-a^2}| +C$

$\therefore I = \frac{x+\frac{3}{2}}{2}\sqrt{x^2+3x}-\frac{\frac{9}{4}}{2}\log \left | \left ( x+\frac{3}{2} \right )+\sqrt{x^2+3x} \right |+C$

$= \frac{2x+3}{4}\sqrt{x^2+3x}-\frac{9}{8}\log\left | \left ( x+\frac{3}{2} \right )+\sqrt{x^2+3x} \right |+C$

### Question:9 Integrate the functions in Exercises 1 to 9.

$\sqrt{1 + \frac{x^2}{9}}$

Given function $\sqrt{1 + \frac{x^2}{9}}$ ,

So, let us consider the function to be;

$I = \int\sqrt{1+\frac{x^2}{9}}dx = \frac{1}{3}\int \sqrt{9+x^2}dx$

$= \frac{1}{3}\int \sqrt{3^2+x^2}dx$

And we know that, $\int \sqrt{x^2+a^2}dx = \frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log|x+\sqrt{x^2+a^2}| +C$

$\therefore I = \frac{1}{3}\left [ \frac{x}{2}\sqrt{x^2+9} +\frac{9}{2}\log|x+\sqrt{x^2+9}| \right ]+C$

$= \frac{x}{6}\sqrt{x^2+9} +\frac{3}{2}\log\left | x+\sqrt{x^2+9} \right |+C$

### Question:10 Choose the correct answer in Exercises 10 to 11.

$\int \sqrt{1+x^2}dx$ is equal to

(A) $\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log\left |\left(x + \sqrt{1+x^2} \right )\right| +C$

(B) $\frac{2}{3}(1+x^2)^{\frac{3}{2}} + C$

(C) $\frac{2}{3}x(1+x^2)^{\frac{3}{2}} + C$

(D) $\frac{x^2}{2}\sqrt{1+x^2} + \frac{1}{2}x^2\log\left |x + \sqrt{1+x^2} \right| +C$

As we know that, $\int \sqrt{x^2+a^2}dx = \frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log|x+\sqrt{x^2+a^2}| +C$

So, $\int \sqrt{1+x^2}dx = \frac{x}{2}\sqrt{x^2+1}+\frac{1}{2}\log|x+\sqrt{x^2+1}| +C$

Therefore the correct answer is A.

### Question:11 Choose the correct answer in Exercises 10 to 11.

$\int \sqrt{x^2 - 8x+7}dx$ is equal to

(A) $\frac{1}{2}(x-4)\sqrt{x^2-8x+7} + 9\log\left|x-4+\sqrt{x^2 -8x+7}\right| +C$

(B) $\frac{1}{2}(x+4)\sqrt{x^2-8x+7} + 9\log\left|x+4+\sqrt{x^2 -8x+7}\right| +C$

(C) $\frac{1}{2}(x-4)\sqrt{x^2-8x+7} -3\sqrt2\log\left|x-4+\sqrt{x^2 -8x+7}\right| +C$

(D) $\frac{1}{2}(x-4)\sqrt{x^2-8x+7} -\frac{9}{2}\log\left|x-4+\sqrt{x^2 -8x+7}\right| +C$

Given integral $\int \sqrt{x^2 - 8x+7}dx$

So, let us consider the function to be;

$I = \int\sqrt{x^2-8x+7}dx =\int\sqrt{(x^2-8x+16)-(9)}dx$

$=\int\sqrt{(x-4)^2-(3)^2}dx$

And we know that, $\int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log|x+\sqrt{x^2-a^2}| +C$

$I = \frac{(x-4)}{2}\sqrt{x^2-8x+7}-\frac{9}{2}\log|(x-4)+\sqrt{x^2-8x+7}| +C$

Therefore the correct answer is D.

## More About NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.7

NCERT solutions for Class 12 Maths chapter 7 exercise 7.7 consists of 11 questions in total and almost all questions are based on the same concept. While solving exercise 7.7 Class 12 Maths students can skip the questions repeated with the same concepts to save their time. NCERT solutions for Class 12 Maths chapter 7 exercise 7.7 cannot be avoided to learn the process of integration of quadratic equations integration.

Also Read| Integrals Class 12 Notes

## Benefits of NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.7

• The Class 12th Maths chapter 7 exercise provided below is in detail prepared in step by step manner.

• Practicing exercise 7.7 Class 12 Maths is highly recommended to learn special types of problems.

• These Class 12 Maths chapter 7 exercise 7.7 solutions can be asked directly in the Board exams as well as competitive exams.

## Also see-

• NCERT Exemplar Solutions Class 12 Maths Chapter 7

• NCERT Solutions for Class 12 Maths Chapter 7

## NCERT Solutions Subject Wise

• NCERT Solutions Class 12 Chemistry

• NCERT Solutions for Class 12 Physics

• NCERT Solutions for Class 12 Biology

• NCERT Solutions for Class 12 Mathematics

## Subject Wise NCERT Exemplar Solutions

• NCERT Exemplar Class 12 Maths

• NCERT Exemplar Class 12 Physics

• NCERT Exemplar Class 12 Chemistry

• NCERT Exemplar Class 12 Biology

Happy learning!!!