NCERT Solutions for Exercise 9.1 Class 12 Maths Chapter 9- Differential Equations

NCERT solutions for exercise 9.1 Class 12 Maths chapter 9 introduces the questions related to differential equations. In the NCERT Class 11 Mathematics Book and also chapter 5 of Class 12 Maths, the concepts of derivatives are discussed. Exercise 9.1 Class 12 Maths gives an idea about equations involving derivatives. NCERT solutions for Class 12 Maths chapter 9 exercise 9.1 give clarity about the concept of degree and order of a differential equation. A few examples are also given in the NCERT Book to understand the same. Here are solutions to Class 12 Maths chapter 9 exercise 9.1 prepared by expert Mathematics faculties. In continuation with the Class 12th Maths chapter 6 exercise 9.1, the NCERT Class 12 chapter differential equations have the following 6 exercises.

Also check -

  • Differential Equations exercise 9.2

  • Differential Equations exercise 9.3

  • Differential Equations exercise 9.4

  • Differential Equations exercise 9.5

  • Differential Equations exercise 9.6

  • Differential Equations miscellaneous exercise

Differential Equations Class 12 Chapter 9 Exercise: 9.1

Question:1 Determine order and degree (if defined) of differential equation \frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0

Answer:

Given function is
\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0
We can rewrite it as
y^{''''}+\sin(y''') =0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{''''}

Therefore, the order of the given differential equation \frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0 is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, it's a degree is not defined

Question:2 Determine order and degree (if defined) of differential equation y' + 5y = 0

Answer:

Given function is
y' + 5y = 0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{'}
Therefore, the order of the given differential equation y' + 5y = 0 is 1
Now, the given differential equation is a polynomial equation in its derivatives and its highest power raised to y ' is 1
Therefore, it's a degree is 1.

Question:3 Determine order and degree (if defined) of differential equation \left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0

Answer:

Given function is
\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0
We can rewrite it as
(s^{'})^4+3s.s^{''} =0
Now, it is clear from the above that, the highest order derivative present in differential equation is s^{''}

Therefore, the order of the given differential equation \left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0 is 2
Now, the given differential equation is a polynomial equation in its derivatives and power raised to s '' is 1
Therefore, it's a degree is 1

Question:4 Determine order and degree (if defined) of differential equation.

\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0

Answer:

Given function is
\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0
We can rewrite it as
(y^{''})^2+\cos y^{''} =0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{''}

Therefore, the order of the given differential equation \left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0 is 2
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, it's a degree is not defined

Question:5 Determine order and degree (if defined) of differential equation.

\frac{d^2y}{dx^2} = \cos 3x + \sin 3x

Answer:

Given function is
\frac{d^2y}{dx^2} = \cos 3x + \sin 3x
\Rightarrow \frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0

Now, it is clear from the above that, the highest order derivative present in differential equation is y^{''}\left ( \frac{d^2y}{dx^2} \right )

Therefore, order of given differential equation \frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0 is 2
Now, the given differential equation is a polynomial equation in it's dervatives \frac{d^2y}{dx^2} and power raised to \frac{d^2y}{dx^2} is 1
Therefore, it's degree is 1

Question:6 Determine order and degree (if defined) of differential equation (y''')^2 + (y'')^3 + (y')^4 + y^5= 0

Answer:

Given function is
(y''')^2 + (y'')^3 + (y')^4 + y^5= 0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{'''}

Therefore, order of given differential equation (y''')^2 + (y'')^3 + (y')^4 + y^5= 0 is 3
Now, the given differential equation is a polynomial equation in it's dervatives y^{'''} , y^{''} \ and \ y^{'} and power raised to y^{'''} is 2
Therefore, it's degree is 2

Question:7 Determine order and degree (if defined) of differential equation

y''' + 2y'' + y' =0

Answer:

Given function is
y''' + 2y'' + y' =0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{'''}

Therefore, order of given differential equation y''' + 2y'' + y' =0 is 3
Now, the given differential equation is a polynomial equation in it's dervatives y^{'''} , y^{''} \ and \ y^{'} and power raised to y^{'''} is 1
Therefore, it's degree is 1

Question:8 Determine order and degree (if defined) of differential equation

y' + y = e^x

Answer:

Given function is
y' + y = e^x
\Rightarrow y^{'}+y-e^x=0

Now, it is clear from the above that, the highest order derivative present in differential equation is y^{'}

Therefore, order of given differential equation y^{'}+y-e^x=0 is 1
Now, the given differential equation is a polynomial equation in it's dervatives y^{'} and power raised to y^{'} is 1
Therefore, it's degree is 1

Question:9 Determine order and degree (if defined) of differential equation

y'' + (y')^2 + 2y = 0

Answer:

Given function is
y'' + (y')^2 + 2y = 0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{''}

Therefore, order of given differential equation y'' + (y')^2 + 2y = 0 is 2
Now, the given differential equation is a polynomial equation in it's dervatives y^{''} \ and \ y^{'} and power raised to y^{''} is 1
Therefore, it's degree is 1

Question:10 Determine order and degree (if defined) of differential equation

y'' + 2y' + \sin y = 0

Answer:

Given function is
y'' + 2y' + \sin y = 0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{''}

Therefore, order of given differential equation y'' + 2y' + \sin y = 0 is 2
Now, the given differential equation is a polynomial equation in it's dervatives y^{''} \ and \ y^{'} and power raised to y^{''} is 1
Therefore, it's degree is 1

Question:11 The degree of the differential equation \left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0 is

(A) 3

(B) 2

(C) 1

(D) not defined

Answer:

Given function is
\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0
We can rewrite it as
(y^{''})^3+(y^{'})^2+\sin y^{'}+1=0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{''}

Therefore, order of given differential equation \left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0 is 2
Now, the given differential equation is a not polynomial equation in it's dervatives
Therefore, it's degree is not defined

Therefore, answer is (D)

Question:12 The order of the differential equation 2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0 is

(A) 2

(B) 1

(C) 0

(D) Not Defined

Answer:

Given function is
2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0
We can rewrite it as
2x.y^{''}-3y^{'}+y=0
Now, it is clear from the above that, the highest order derivative present in differential equation is y^{''}

Therefore, order of given differential equation 2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0 is 2

Therefore, answer is (A)

More About NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.1

There is one example prior to exercise 9.1 Class 12 Maths and 12 questions in the Class 12 Maths chapter 9 exercise 9.1. Two questions of Class 12th Maths chapter 6 exercise 9.1 are multiple objective type questions. All the questions in NCERT solutions for Class 12 Maths chapter 9 exercise 9.1 are to find the order and degree of the given differential equations.

Also Read| Differential Equations Class 12th Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.1

  • One fill in the blank or multiple choice type or very short answer can be expected from exercise 9.1 Class 12 Maths for CBSE Class 12 Maths Board Exams

  • Not only CBSE, but certain state boards also follow the NCERT Syllabus. Therefore the NCERT solutions for Class 12 Maths chapter 9 exercise 9.1 can be used to prepare for state boards that follow NCERT.

Also see-

  • NCERT Exemplar Solutions Class 12 Maths Chapter 9

  • NCERT Solutions for Class 12 Maths Chapter 9

NCERT Solutions Subject Wise

  • NCERT Solutions Class 12 Chemistry

  • NCERT Solutions for Class 12 Physics

  • NCERT Solutions for Class 12 Biology

  • NCERT Solutions for Class 12 Mathematics

Subject Wise NCERT Exemplar Solutions

  • NCERT Exemplar Class 12 Maths

  • NCERT Exemplar Class 12 Physics

  • NCERT Exemplar Class 12 Chemistry

  • NCERT Exemplar Class 12 Biology