NCERT Solutions for Miscellaneous Exercise Chapter 2 Class 12 - Inverse Trigonometric Functions
NCERT solutions for Class 12 Maths chapter 2 miscellaneous exercise has a set of questions which are not introduced in earlier exercises. Class 12 Maths chapter 2 miscellaneous exercise basically deals with the questions related to proving of the inverse trigonometric functions equivalent. By using various methods and techniques, such equations are proved equal to each other. Students can easily find that many questions were asked from Class 12 Maths chapter 2 miscellaneous exercise in the board exams. Hence it is highly recommended to practice the NCERT solutions for Class 12 maths chapter 2 including miscellaneous exercise which is present in NCERT Class 12th book. Students can also refer to NCERT questions for better understanding.
NCERT solutions for class 12 maths chapter 2 exercise 2.1
NCERT solutions for class 12 maths chapter 2 exercise 2.2
NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Miscellaneous Exercise
Question:1 Find the value of the following:
Answer:
If then , which is principal value of .
So, we have
Therefore we have,
.
Question:2 Find the value of the following:
Answer:
We have given ;
so, as we know
So, here we have .
Therefore we can write as:
.
Question:3 Prove that
Answer:
To prove: ;
Assume that
then we have .
or
Therefore we have
Now,
We can write L.H.S as
as we know
L.H.S = R.H.S
Question:4 Prove that
Answer
Taking
then,
Therefore we have-
.............(1).
,
Then,
.............(2).
So, we have now,
L.H.S.
using equations (1) and (2) we get,
= R.H.S.
Question:5 Prove that
Answer:
Take and and
then we have,
Then we can write it as:
or
...............(1)
Now,
So, ...................(2)
Also we have similarly;
Then,
...........................(3)
Now, we have
L.H.S
so, using (1) and (2) we get,
or we can write it as;
= R.H.S.
Hence proved.
Question:6 Prove that
Answer:
Converting all terms in tan form;
Let , and .
now, converting all the terms:
or
We can write it in tan form as:
.
or ................(1)
or
We can write it in tan form as:
or ......................(2)
Similarly, for ;
we have .............(3)
Using (1) and (2) we have L.H.S
On applying
We have,
...........[Using (3)]
=R.H.S.
Hence proved.
Question:7 Prove that
Answer:
Taking R.H.S;
We have
Converting sin and cos terms in tan forms:
Let and
now, we have or
............(1)
Now,
................(2)
Now, Using (1) and (2) we get,
R.H.S.
as we know
so,
equal to L.H.S
Hence proved.
Question:8 Prove that
Answer:
Applying the formlua:
on two parts.
we will have,
Hence it s equal to R.H.S
Proved.
Question:9 Prove that
Answer:
By observing the square root we will first put
.
Then,
we have
or, R.H.S.
.
L.H.S.
hence L.H.S. = R.H.S proved.
Question:10 Prove that
Answer:
Given that
By observing we can rationalize the fraction
We get then,
Therefore we can write it as;
As L.H.S. = R.H.S.
Hence proved.
Question:11 Prove that
[Hint: Put ]
Answer:
By using the Hint we will put ;
we get then,
dividing numerator and denominator by ,
we get,
using the formula
As L.H.S = R.H.S
Hence proved
Question:12 Prove that
Answer:
We have to solve the given equation:
Take as common in L.H.S,
or from
Now, assume,
Then,
Therefore we have now,
So we have L.H.S then
That is equal to R.H.S.
Hence proved.
Question:13 Solve the following equations:
Answer:
Given equation ;
Using the formula:
We can write
So, we can equate;
that implies that .
or or
Hence we have solution .
Question:14 Solve the following equations:
Answer:
Given equation is
:
L.H.S can be written as;
Using the formula
So, we have
Hence the value of .
Question:15 is equal to
(A)
(B)
(C)
(D)
Answer:
Let then we have;
or
Hence the correct answer is D.
Question:16 then is equal to
(A)
(B)
(C) 0
(D)
Answer:
Given the equation:
we can migrate the term to the R.H.S.
then we have;
or ............................(1)
from
Take or .
So, we conclude that;
Therefore we can put the value of in equation (1) we get,
Putting x= sin y , in the above equation; we have then,
So, we have the solution;
Therefore we have .
When we have , we can see that :
So, it is not equal to the R.H.S.
Thus we have only one solution which is x = 0
Hence the correct answer is (C).
Question:17 is equal to
(A)
(B)
(C)
(D)
Answer:
Applying formula: .
We get,
Hence, the correct answer is C.
More About NCERT Solutions for Class 12 Maths Chapter 2 Miscellaneous Exercise
The NCERT Class 12 Maths chapter Inverse Trigonometric functions provided here is prepared by the experienced faculties. NCERT solutions for Class 12 Maths chapter 2 miscellaneous exercise covers the major syllabus of this chapter from exam perspective. As questions from this exercise are asked more than those of previous exercises. Therefore NCERT solutions for Class 12 Maths chapter 2 miscellaneous exercise becomes a must to do exercise for the examination.
Also Read| Inverse Trigonometric Functions NCERT Notes
Benefits of NCERT Solutions for Class 12 Maths Chapter 2 Miscellaneous Exercises
Miscellaneous exercise chapter 2 Class 12 NCERT syllabus has some of the questions which are very important from exam point of view.
Questions mentioned in NCERT book Class 12 Maths chapter 2 miscellaneous solutions are of the level of JEE and NEET.
It is a good source for revision also. Hence NCERT solutions for Class 12 Maths chapter 2 miscellaneous exercises can be referred directly to score well in the exam.
Also see-
NCERT exemplar solutions Class 12 Maths chapter 2
NCERT solutions for Class 12 Maths chapter 2
NCERT Solutions Subject Wise
NCERT solutions class 12 Chemistry
NCERT solutions for class 12 Physics
NCERT solutions for class 12 Biology
NCERT solutions for class 12 Mathematics
Subject wise NCERT Exemplar solutions
NCERT Exemplar Class 12th Maths
NCERT Exemplar Class 12th Physics
NCERT Exemplar Class 12th Chemistry
NCERT Exemplar Class 12th Biology
Happy learning!!!