NCERT Solutions for Miscellaneous Exercise Chapter 5 Class 12 - Continuity and Differentiability
In the Class 12 Maths chapter 5 miscellaneous exercise solutions, you will get a mixture of questions from all the previous exercises of this Class 12 Maths NCERT textbook chapter. You will get questions related to first-order derivatives of different types of functions, second-order derivatives, mean-value theorem, Rolle's theorem in the miscellaneous exercise chapter 5 Class 12.
This Class 12 NCERT syllabus exercise is a bit difficult as compared to previous exercises, so you may not be able to solve NCERT problems from this exercise at first. You can take help from NCERT solutions for Class 12 Maths chapter 5 miscellaneous exercise to get clarity. There are not many questions asked in the board exams from this exercise, but Class 12 Maths chapter 5 miscellaneous solutions are important for the students who are preparing for competitive exams like JEE main, SRMJEE, VITEEE, MET, etc. You can click on the given link if you are looking for NCERT Solutions for Class 6 to Class 12 at one place.
Also, see
- Continuity and Differentiability Exercise 5.1
- Continuity and Differentiability Exercise 5.2
- Continuity and Differentiability Exercise 5.3
- Continuity and Differentiability Exercise 5.4
- Continuity and Differentiability Exercise 5.5
- Continuity and Differentiability Exercise 5.6
- Continuity and Differentiability Exercise 5.7
- Continuity and Differentiability Exercise 5.8
Continuity and Differentiability Miscellaneous Exercise:
Question:1 Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
Now, differentiation w.r.t. x is
Therefore, differentiation w.r.t. x is
Question:2 Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
Now, differentiation w.r.t. x is
Therefore, differentiation w.r.t. x is
Question:3 Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
Take, log on both the sides
Now, differentiation w.r.t. x is
By using product rule
Therefore, differentiation w.r.t. x is
Question:4 Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
Now, differentiation w.r.t. x is
Therefore, differentiation w.r.t. x is
Question:5 Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
Now, differentiation w.r.t. x is
By using the Quotient rule
Therefore, differentiation w.r.t. x is
Question:6 Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
Now, rationalize the [] part
Given function reduces to
Now, differentiation w.r.t. x is
Therefore, differentiation w.r.t. x is
Question:7 Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
Take log on both sides
Now, differentiate w.r.t.
Therefore, differentiation w.r.t x is
Question:8 , for some constant a and b.
Answer:
Given function is
Now, differentiation w.r.t x
Therefore, differentiation w.r.t x
Question:9
Answer:
Given function is
Take log on both the sides
Now, differentiate w.r.t. x
Therefore, differentiation w.r.t x is
Question:10 , for some fixed a > 0 and x > 0
Answer:
Given function is
Lets take
Now, take log on both sides
Now, differentiate w.r.t x
-(i)
Similarly, take
take log on both the sides
Now, differentiate w.r.t x
-(ii)
Similarly, take
take log on both the sides
Now, differentiate w.r.t x
-(iii)
Similarly, take
take log on both the sides
Now, differentiate w.r.t x
-(iv)
Now,
Put values from equation (i) , (ii) ,(iii) and (iv)
Therefore, differentiation w.r.t. x is
Question:11
Answer:
Given function is
take
Now, take log on both the sides
Now, differentiate w.r.t x
-(i)
Similarly,
take
Now, take log on both the sides
Now, differentiate w.r.t x
-(ii)
Now
Put the value from equation (i) and (ii)
Therefore, differentiation w.r.t x is
Question:12 Find dy/dx if
Answer:
Given equations are
Now, differentiate both y and x w.r.t t independently
And
Now
Therefore, differentiation w.r.t x is
Question:13 Find dy/dx if
Answer:
Given function is
Now, differentiatiate w.r.t. x
Therefore, differentiatiate w.r.t. x is 0
Question:14 If
Answer:
Given function is
Now, squaring both sides
Now, differentiate w.r.t. x is
Hence proved
Question:15 If , for some c > 0, prove that is a constant independent of a and b.
Answer:
Given function is
- (i)
Now, differentiate w.r.t. x
-(ii)
Now, the second derivative
Now, put values from equation (i) and (ii)
Now,
Which is independent of a and b
Hence proved
Question:16 If , with , prove that
Answer:
Given function is
Now, Differentiate w.r.t x
Hence proved
Question:17 If and find
Answer:
Given functions are
and
Now, differentiate both the functions w.r.t. t independently
We get
Similarly,
Now,
Now, the second derivative
Therefore,
Question:18 If, show that f ''(x) exists for all real x and find it.
Answer:
Given function is
Now, differentiate in both the cases
And
In both, the cases f ''(x) exist
Hence, we can say that f ''(x) exists for all real x
and values are
Question:19 Using mathematical induction prove that for all positive integers n.
Answer:
Given equation is
We need to show that for all positive integers n
Now,
For ( n = 1)
Hence, true for n = 1
For (n = k)
Hence, true for n = k
For ( n = k+1)
Hence, (n = k+1) is true whenever (n = k) is true
Therefore, by the principle of mathematical induction we can say that is true for all positive integers n
Question:20 Using the fact that and the differentiation,
obtain the sum formula for cosines.
Answer:
Given function is
Now, differentiate w.r.t. x
Hence, we get the formula by differentiation of sin(A + B)
Question:21 Does there exist a function which is continuous everywhere but not differentiable
at exactly two points? Justify your answer.
Answer:
Consider f(x) = |x| + |x +1|
We know that modulus functions are continuous everywhere and sum of two continuous function is also a continuous function
Therefore, our function f(x) is continuous
Now,
If Lets differentiability of our function at x = 0 and x= -1
L.H.D. at x = 0
R.H.L. at x = 0
R.H.L. is not equal to L.H.L.
Hence.at x = 0 is the function is not differentiable
Now, Similarly
R.H.L. at x = -1
L.H.L. at x = -1
L.H.L. is not equal to R.H.L, so not differentiable at x=-1
Hence, exactly two points where it is not differentiable
Question:22 If , prove that
Answer:
Given that
We can rewrite it as
Now, differentiate w.r.t x
we will get
Hence proved
Question:23 If , show that
Answer:
Given function is
Now, differentiate w.r.t x
we will get
-(i)
Now, again differentiate w.r.t x
-(ii)
Now, we need to show that
Put the values from equation (i) and (ii)
Hence proved
More About NCERT Solutions for Class 12 Maths Chapter 5 Miscellaneous Exercise
In Class 12 Maths chapter 5 miscellaneous solutions there are 23 questions related to finding derivatives of different types of functions, second-order derivatives, and mixed concepts questions from all the previous exercises of this chapter. Before solving the exercises questions, you can try to solve solved examples given before this exercise. It will help you to get more clarity of the concept and you will be able to solve miscellaneous questions by yourself.
Also Read| Continuity and Differentiability Class 12 Chapter 5 Notes
Benefits of NCERT Solutions for Class 12 Maths Chapter 5 Miscellaneous Exercise
- Sometimes questions from miscellaneous exercises are asked in the competitive exam so, the Class 12 Maths chapter 5 miscellaneous solutions becomes important.
- First, try to solve NCERT problems by yourself, it will check your understanding of the concept
- NCERT solutions for Class 12 Maths chapter 5 miscellaneous exercise can be used for reference.
Also see-
NCERT Solutions for Class 12 Maths Chapter 5
NCERT Exemplar Solutions Class 12 Maths Chapter 5
NCERT Solutions of Class 12 Subject Wise
NCERT Solutions for Class 12 Maths
NCERT Solutions for Class 12 Physics
NCERT Solutions for Class 12 Chemistry
NCERT Solutions for Class 12 Biology
Subject Wise NCERT Exampler Solutions
NCERT Exemplar Solutions for Class 12 Maths
NCERT Exemplar Solutions for Class 12 Physics
NCERT Exemplar Solutions for Class 12 Chemistry
NCERT Exemplar Solutions for Class 12 Biology
Happy learning!!!
Which Topics Were Most Important For MHT CET Over The Past 5 Years? Read Here 6 min read Mar 18, 2022 Read More Can You Predict Whether A Cricket Ball Will Hit The Stumps With Class 11 Maths? Learn How 3 min read Mar 05, 2022 Read More